WHY IS VENUS LIKE A GREENHOUSE?

          Less than 20% of sunlight falling on Venus breaks through the clouds. Despite this, Venus has the hottest surface temperature of any planet in the Solar System. This is because infrared radiation (heat) released from the planet cannot escape back into space. The atmosphere traps heat inside, like the glass in a green-house, meaning that the temperature is over 400°C (750°F), greater than it would he if Venus had no atmosphere.

          Greenhouse involving carbon dioxide and water vapor may have occurred on Venus. In this scenario, early Venus may have had a global ocean if the outgoing thermal radiation was below the Simpson-Nakajima limit but above the moist greenhouse limit. As the brightness of the early Sun increased, the amount of water vapor in the atmosphere increased, increasing the temperature and consequently increasing the evaporation of the ocean, leading eventually to the situation in which the oceans boiled, and all of the water vapor entered the atmosphere. This scenario helps to explain why there is little water vapor in the atmosphere of Venus today. If Venus initially formed with water, the greenhouse would have hydrated Venus’ stratosphere, and the water would have escaped to space. Some evidence for this scenario comes from the extremely high deuterium to hydrogen ratio in Venus’ atmosphere, roughly 150 times that of Earth, since light hydrogen would escape from the atmosphere more readily than its heavier isotope, deuterium. Venus is sufficiently strongly heated by the Sun that water vapor can rise much higher in the atmosphere and be split into hydrogen and oxygen by ultraviolet light. The hydrogen can then escape from the atmosphere while the oxygen recombines or bonds to iron on the planet’s surface. The deficit of water on Venus due to the runaway greenhouse effect is thought to explain why Venus does not exhibit surface features consistent with plate tectonics, meaning it would be a stagnant lid planet. Carbon dioxide, the dominant greenhouse gas in the current Venusian atmosphere, owes its larger concentration to the weakness of carbon recycling as compared to Earth, where the carbon dioxide emitted from volcanoes is efficiently sub ducted into the Earth by plate tectonics on geologic time scales through the carbonate-silicate cycle, which requires precipitation to function.