WHAT IS THE ECLIPTIC?

When people first began to study the movement of the Sun, they believed that it orbited the Earth. It seemed to move along the same path through the skies every day, and the path was named the ecliptic. We now know that the Earth orbits the Sun, and that this line is actually a projection of Earth’s orbit around the Sun on to the stars beyond (left).

The ecliptic is the mean plane of the apparent path in the Earth’s sky that the Sun follows over the course of one year; it is the basis of the ecliptic coordinate system. This plane of reference is coplanar with Earth’s orbit around the Sun (and hence the Sun’s apparent path around Earth). The ecliptic is not normally noticeable from Earth’s surface because the planet’s rotation carries the observer through the daily cycles of sunset and sunset, which obscure the Sun’s apparent motion against the background of stars during the year.

The motions as described above are simplifications. Because of the movement of Earth around the Earth–Moon center of mass, the apparent path of the Sun wobbles slightly, with a period of about one month. Because of further perturbations by the other planets of the Solar System, the Earth–Moon barycenter wobbles slightly around a mean position in a complex fashion. The ecliptic is actually the apparent path of the Sun throughout the course of a year.

Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun’s position against the stars causes any particular spot on Earth’s surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth would not orbit; a day on Earth is therefore 24 hours long rather than the approximately 23-hour 56-minute sidereal day. Again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun. The actual speed with which Earth orbits the Sun varies slightly during the year, so the speed with which the Sun seems to move along the ecliptic also varies. For example, the Sun is north of the celestial equator for about 185 days of each year and south of it for about 180 days. The variation of orbital speed accounts for part of the equation of time.

Picture Credit : Google