WHAT IS A NUCLEAR REACTION?

There are two kinds of nuclear reaction, both of which give off huge amounts of energy. Nuclear fusion happens when two nuclei collide and combine to form one larger nucleus. This gives off enormous power. Nuclear fission happens when neutrons bombard the nucleus of an atom, causing the nucleus to split apart.

In nuclear physics and nuclear chemistry, a nuclear reaction is semantically considered to be the process in which two nuclei, or else a nucleus of an atom and a subatomic particle (such as a proton, neutron, or high energy electron) from outside the atom, collide to produce one or more nuclides that are different from the nuclide(s) that began the process (parent nuclei). Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

In principle, a reaction can involve more than two particles colliding, but because the probability of three or more nuclei to meet at the same time at the same place is much less than for two nuclei, such an event is exceptionally rare for an example very close to a three-body nuclear reaction). The term “nuclear reaction” may refer either to a change in a nuclide induced by collision with another particle, or to a spontaneous change of a nuclide without collision.

Natural nuclear reactions occur in the interaction between cosmic rays and matter, and nuclear reactions can be employed artificially to obtain nuclear energy, at an adjustable rate, on demand. Perhaps the most notable nuclear reactions are the nuclear chain reactions in fissionable materials that produce induced nuclear fission, and the various nuclear fusion reactions of light elements that power the energy production of the Sun and stars.

Picture Credit : Google