WHAT IS THE DIFFERENCE BETWEEN THERMOPLASTICS AND THERMOSETS?

Some plastics, such as polythene, can be melted and reshaped over and over again. These plastics are recyclable and are called thermoplastics. Other plastics are more resistant to heat and cannot be melted and reshaped. They are known as thermoset. Plastic kitchen work-surfaces and the hard plastic casings around some electrical goods are made from thermoset.

Though thermoset plastics and thermoplastics sound similar, they have very different properties and applications. Understanding the performance differences can help you make better sourcing decisions and improve your product designs.

The primary physical difference is that thermoplastics can be remelted back into a liquid, whereas thermoset plastics always remain in a permanent solid state. Think of thermoplastics as butter – butter can be melted and cooled multiple times to form various shapes. Thermoset is similar to bread in that once the final state is achieved, any additional heat would lead to charring.

Thermoset

Thermoset plastics contain polymers that cross-link together during the curing process to form an irreversible chemical bond. The cross-linking process eliminates the risk of the product remelting when heat is applied, making thermosets ideal for high-heat applications such as electronics and appliances.

Thermoset plastics significantly improve the material’s mechanical properties, providing enhances chemical resistance, heat resistance and structural integrity. Thermoset plastics are often used for sealed products due to their resistance to deformation.

Thermoplastics

Thermoplastics pellets soften when heated and become more fluid as additional heat is applied. The curing process is completely reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be remolded and recycled without negatively affecting the material’s physical properties.

There are multiple thermoplastic resins that offer various performance benefits, but most materials commonly offer high strength, shrink-resistance and easy bendability. Depending on the resin, thermoplastics can serve low-stress applications such as plastic bags or high-stress mechanical parts.

Picture Credit : Google