WHAT IS UV RADIATION?

Ultraviolet (UV) radiation is a form of electromagnetic radiation that comes from the sun. Humans have found use for this radiation in industry and dentistry. However, too much exposure to UV rays harms not just humans but can alter our environment because it can inhibit growth in green plants. The ozone layer that protects us from harmful UV rays has faced depletion, primarily due to certain types of chemicals we humans manufacture.

Our natural source of UV radiation:

The sun

Some artificial sources of UV radiation include:

  • Tanning beds
  • Mercury vapor lighting (often found in stadiums and school gyms)
  • Some halogen, fluorescent, and incandescent lights
  • Some types of lasers

UV radiation is classified into three primary types: ultraviolet A (UVA), ultraviolet B (UVB), and ultraviolet C (UVC), based on their wavelengths. Almost all of the UV radiation that reaches earth is UVA though some UVB radiation reaches earth. UVA and UVB radiation can both affect health but UVA penetrates deeper into the skin and is more constant throughout the year.

Benefits

The production of vitamin D, a vitamin essential to human health.

Vitamin D helps the body absorb calcium and phosphorus from food and assists bone development. The World Health Organization (WHO) recommends 5 to 15 minutes of sun exposure 2 to 3 times a week.

Risks

Sunburn is a sign of short-term overexposure, while premature aging and skin cancer are side effects of prolonged UV exposure.
UV exposure increases the risk of potentially blinding eye diseases, if eye protection is not used.
Overexposure to UV radiation can lead to serious health issues, including cancer.

Skin cancer is the most common cancer in the United States. The two most common types of skin cancer are basal cell cancer and squamous cell cancer. Typically, they form on the head, face, neck, hands, and arms because these body parts are the most exposed to UV radiation. Most cases of melanoma, the deadliest kind of skin cancer, are caused by exposure to UV radiation.

Anyone can have harmful health effects from UV radiation, but the risks increase in people who:

Spend a lot of time in the sun or have been sunburned.
Have light-color skin, hair, and eyes.
Take some types of oral and topical medicines, such as antibiotics, birth control pills, and benzoyl peroxide products, as well as some cosmetics, may increase skin and eye sensitivity to UV in all skin types.
Have a family member with skin cancer.
Are over age 50.

To protect yourself from UV radiation:

Stay in the shade, especially during midday hours.
Wear clothes that cover your arms and legs.
Consider options to protect your children.
Wear a wide brim hat to shade your face, head, ears, and neck.
Wear wraparound sunglasses that block both UVA and UVB rays.
Use sunscreen with sun protection factor (SPF) 15 or higher, for both UVA and UVB protection.
Avoid indoor tanning. Indoor tanning is particularly dangerous for younger users; people who begin indoor tanning during adolescence or early adulthood have a higher risk of developing melanoma.

Credt : National centre for Environment health   

Picture Credit : Google 

WHAT IS SEA LEVEL RISE AND WHY IS IT HAPPENING?

As our planet warms, oceans across the globe absorb a large portion of the heat generated. In the process, the water expands, resulting in universal sea-level rise. In addition, the rise is also caused by the melting of glaciers and icebergs. Usually such melting during warmer months and freezing during colder months is a natural phenomenon. However, with global warming, there's more of the former than the latter, leading to alarming sea-level rise, threatening to submerge several cities within just a few decades.

Why does sea level change?

Causes sea level to rise because water expands as it warms up; melting of the world’s ice sheets. A large ice mass, which flows over hills and valleys and occupies a large portion of a continent. The world has only three major ice sheets today (Greenland, West Antarctica, and East Antarctica).

 In Greenland and Antarctica;  melting of smaller around the world; and decrease in the amount of water held on land, for example, in groundwater beneath the land and in reservoirs above the land. Ocean warming accounts for around half of the observed change in sea level (this is often called “thermal expansion”), with the melting of thousands of small glaciers accounting for the other half of the increase in sea level. Since the 1800s, the melting ice sheets in Antarctica and Greenland have contributed relatively little to sea level change. But, these ice sheets are starting to melt faster due to global warming and may push sea level up much more in the future.

How much could sea level rise?

Because of global warming, the thermal expansion of the ocean and glacier melting will continue to play a role in the rise of sea level in the future . If all of the planet’s remaining as small glaciers were to melt, sea level would rise about 50 cm. The amount that thermal expansion can raise sea level in the future will depend on the continued warming of sea water. The largest possible contribution to sea level rise in the future comes from the world’s large ice sheets in Greenland, West Antarctica, and East Antarctica. If these ice sheets melted completely, the level of the oceans would rise about 7 m from the Greenland ice sheet, 5 m from the West Antarctic ice sheet, and 53 m from the East Antarctic ice sheet. This is why many glaciologists (scientists who study ice) focus on how Greenland and Antarctica are changing because of global warming.

How will sea level rise affect the countries of the world?

The effect of ice sheet melting on sea level is different across the world.

So, when the sea level rises, people will be affected in different ways, depending on where they live. The UK is used to occasionally dealing with rising sea level for short periods of time, particularly when there are storms at the same time as when the tides higher than usual. If the IPCC predictions are correct, we must consider the possible increase in sea level on top of natural tidal surges. This will cause dangerously high tides to occur more often in the coming decades, and these future tides might be more destructive than we are used to.

In farming regions near the coast, seawater flooding on land can contaminate the soils with salt, making them less able to support the growth of crops. The salty water may also get into underground stores of fresh water (known as groundwater), which is the source of important drinking water and also for farmers to grow crops.

In coastal cities, sea level rise will cause more flooding to houses, businesses, and while it may seem sensible to consider moving cities away from harmful floods, especially as we know it will likely happen in the future, our cities cost so much to develop that we are more likely to simply try to protect them from rising sea levels. A vision of our cities near the sea involves them with walls facing the ocean several meters high, with the street level of the cities themselves being below the level of the ever rising sea.

Credit : Frontiers for young mind 

Picture Credit : Google 

WHAT IS PERMAFROST AND WHY IS IT IMPORTANT?

Permafrost is permanently frozen ground comprising soil, rocks, and sand, and often spans the Arctic regions. Found both on land and below the ocean floor, it covers vast expanses, and is a habitat for several animals and plants. Melting permafrost is a concern because it releases vast amounts of trapped greenhouse gases into the atmosphere.

What is Permafrost Made Of?

Permafrost is made of a combination of soil, rocks and sand that are held together by ice. The soil and ice in permafrost stay frozen all year long.

Near the surface, permafrost soils also contain large quantities of organic carbon—a material leftover from dead plants that couldn’t decompose, or rot away, due to the cold. Lower permafrost layers contain soils made mostly of minerals.

A layer of soil on top of permafrost does not stay frozen all year. This layer, called the active layer, thaws during the warm summer months and freezes again in the fall. In colder regions, the ground rarely thaws—even in the summer. There, the active layer is very thin—only 4 to 6 inches (10 to 15 centimeters). In warmer permafrost regions, the active layer can be several meters thick.

How Does Climate Change Affect Permafrost?

As Earth’s climate warms, the permafrost is thawing. That means the ice inside the permafrost melts, leaving behind water and soil.

Thawing permafrost can have dramatic impacts on our planet and the things living on it. For example:

  1. Many northern villages are built on permafrost. When permafrost is frozen, it’s harder than concrete. However, thawing permafrost can destroy houses, roads and other infrastructure.
  2. When permafrost is frozen, plant material in the soil—called organic carbon—can’t decompose, or rot away. As permafrost thaws, microbes begin decomposing this material. This process releases greenhouse gases like carbon dioxide and methane to the atmosphere.
  3. When permafrost thaws, so do ancient bacteria and viruses in the ice and soil. These newly-unfrozen microbes could make humans and animals very sick. Scientists have discovered microbes more than 400,000 years old in thawed permafrost.
  4. Because of these dangers, scientists are closely monitoring Earth’s permafrost. Scientists use satellite observations from space to look at large regions of permafrost that would be difficult to study from the ground.

Credit : Climate kids

Picture Credit : Google 

WHAT IS OZONE LAYER AND ITS IMPORTANCE?

About 15 to 35 km above the Earth's surface is gas called Ozone that surrounds the planet. This layer shields the Earth from the UV radiation from the sun However, pollution has caused this layer to thin exposing life on the planet to harmful radiation. The Montreal Protocol on Substances That Deplete the Ozone Layer (which was adopted on September 15, 1987) is an international treaty designed to protect the ozone layer from depletion by phasing out the production of a number of substances believed to be responsible for ozone depletion.

How is Ozone created?

When the sun's rays split oxygen molecules into single atoms, Ozone is created in the atmosphere. These single atoms combine with nearby oxygen to form a three-oxygen molecule — Ozone.

 Who discovered the Ozone Layer?

 The Ozone Layer was discovered by the French physicists Charles Fabry and Henri Buisson in 1913.

 Why is Ozone Layer important?

 Ozone protects the Earth from harmful ultraviolet (UV) rays from the Sun. Without the Ozone layer in the atmosphere, life on Earth would be very difficult. Plants cannot live and grow in heavy ultraviolet radiation, nor can the planktons that serve as food for most of the ocean life. With a weakening of the Ozone Layer shield, humans would be more susceptible to skin cancer, cataracts and impaired immune systems.

 Is Ozone harmful?

 Ozone can both protect and harm the Earth — it all depends on where it resides. For instance, if Ozone is present in the stratosphere of the atmosphere, it will act as a shield. However, if it is in the troposphere (about 10 km from the Earth's surface), Ozone is harmful. It is a pollutant that can cause damage to lung tissues and plants. Hence, an upset in the ozone balance can have serious consequences.

Disruption of Ozone Balance in the atmosphere

 Since the 1970s scientists have observed human activities to be disrupting the ozone balance. Production of chlorine-containing chemicals, such as chlorofluorocarbons (CFCs), have added to depletion of the Ozone Layer.

 What is 'Ozone Layer depletion'?

Chemicals containing chlorine and bromine atoms are released in the atmosphere through human activities. These chemicals combine with certain weather conditions to cause reactions in the Ozone Layer, leading to ozone molecules getting destroyed. Depletion of the Ozone Layer occurs globally, but the severe depletion of the Ozone Layer over the Antarctic is often referred to as the 'Ozone Hole'. Increased depletion has recently started occurring over the Arctic as well.

Credit : Business standard

Picture Credit : Google 

WHAT IS NITROGEN CYCLE? WHAT ARE THE STAGES OF NITROGEN CYCLE?

Our atmosphere is made up of 78% nitrogen. This element is essential for all living beings but we cannot directly take the nitrogen from the environment. We must absorb it through our food. The nitrogen cycle follows the circulation of nitrogen from the atmosphere to the soil, to animals and back. Nitrogen in the atmosphere falls to the earth through snow and rain. Once in the soil, the nitrogen combines with the hydrogen on the roots of the plants to form ammonia. This process is called Nitrogen fixation. Additional bacteria further combine this ammonia with oxygen in a process called Nitrification. At this point, the nitrogen is in a form called nitrite, which is further converted into nitrate by the bacteria. Plants can absorb nitrogen in this state through a process called assimilation and the rest is utilised by the bacteria. The remainder is released back into the atmosphere through the process of denitrification.

Nitrogen Cycle Explained – Stages of Nitrogen Cycle

Process of the Nitrogen Cycle consists of the following steps – Nitrogen fixation, Nitrification, Assimilation, Ammonification and Denitrification. These processes take place in several stages and are explained below:

Nitrogen Fixation Process

It is the initial step of the nitrogen cycle. Here, Atmospheric nitrogen (N2) which is primarily available in an inert form, is converted into the usable form -ammonia (NH3).

During the process of Nitrogen fixation, the inert form of nitrogen gas is deposited into soils from the atmosphere and surface waters, mainly through precipitation.

The entire process of Nitrogen fixation is completed by symbiotic bacteria, which are known as Diazotrophs. Azotobacter and Rhizobium also have a major role in this process. These bacteria consist of a nitrogenase enzyme, which has the capability to combine gaseous nitrogen with hydrogen to form ammonia.

Nitrogen fixation can occur either by atmospheric fixation- which involves lightening, or industrial fixation by manufacturing ammonia under high temperature and pressure conditions. This can also be fixed through man-made processes, primarily industrial processes that create ammonia and nitrogen-rich fertilisers.

Assimilation

Primary producers – plants take in the nitrogen compounds from the soil with the help of their roots, which are available in the form of ammonia, nitrite ions, nitrate ions or ammonium ions and are used in the formation of the plant and animal proteins. This way, it enters the food web when the primary consumers eat the plants.

Ammonification

When plants or animals die, the nitrogen present in the organic matter is released back into the soil. The decomposers, namely bacteria or fungi present in the soil, convert the organic matter back into ammonium. This process of decomposition produces ammonia, which is further used for other biological processes.

Denitrification

Denitrification is the process in which the nitrogen compounds make their way back into the atmosphere by converting nitrate (NO3-)  into gaseous nitrogen (N). This process of the nitrogen cycle is the final stage and occurs in the absence of oxygen. Denitrification is carried out by the denitrifying bacterial species- Clostridium and Pseudomonas, which will process nitrate to gain oxygen and gives out free nitrogen gas as a byproduct.

Conclusion

Nitrogen is abundant in the atmosphere, but it is unusable to plants or animals unless it is converted into nitrogen compounds.

Nitrogen-fixing bacteria play a crucial role in fixing atmospheric nitrogen into nitrogen compounds that can be used by plants.

The plants absorb the usable nitrogen compounds from the soil through their roots. Then, these nitrogen compounds are used for the production of proteins and other compounds in the plant cell.

Animals assimilate nitrogen by consuming these plants or other animals that contain nitrogen. Humans consume proteins from these plants and animals. The nitrogen then assimilates into our body system.

During the final stages of the nitrogen cycle, bacteria and fungi help decompose organic matter, where the nitrogenous compounds get dissolved into the soil which is again used by the plants.

Some bacteria then convert these nitrogenous compounds in the soil and turn it into nitrogen gas. Eventually, it goes back to the atmosphere.

These sets of processes repeat continuously and thus maintain the percentage of nitrogen in the atmosphere.

Credit : BYJU’S 

Picture Credit : Google 

WHAT ARE MANGROVES?

Mangroves are bushes or trees that grow in thick clusters along sea coasts and riverbanks.

Their roots stick out of the mud in thick tangles and prevent the waves from washing away the sand (or dirt) from the coastline Sundarbans in Bangladesh and India is the world's largest single tract of mangroves.

Where Are Mangroves Found?

Mangroves grow in sheltered tropical and subtropical coastal areas across the globe. In general, this is an area between latitudes of 25 degrees north and 25 degrees south, however, geographical limits are highly variable depending upon the area of the world and local climates. In Eastern Australia, the mangrove Avicennia marina can grow as far south as 38 degrees and Avicennia germinans can grow as far north as 32 degrees in the Atlantic. A major restriction for where mangroves can live is temperature. The cooler temperatures of northern temperate regions prove too much for the mangroves. A fluctuation of ten degrees in a short period of time is enough stress to damage the plant and freezing temperatures for even a few hours can kill some mangrove species. However, rising temperatures and sea level due to climate change are allowing mangroves to expand their ranges farther away from the equator and encroach on temperate wetlands, like salt marshes. Also, on some isolated tropical islands, such as Hawaii and Tahiti, mangroves are not native and are sometimes considered invasive species.

Growth and Reproduction

Life by the ocean has its perks—for mangroves, proximity to the waves and tides helps with reproduction. 

For most plants, the seeds remain dormant until after they are dispersed to a favorable environment. Not mangroves. Mangrove offspring begin to grow while still attached to their parent. This type of plant reproduction is called vivipary. After mangrove flowers are pollinated the plants produce seeds that immediately begin to germinate into seedlings. The little seedlings, called propagules, then fall off the tree, and can be swept away by the ocean current. Depending upon the species, propagules will float for a number of days before becoming waterlogged and sinking to the muddy bottom, where they lodge in the soil. Propagules of Rhizophora are able to grow over a year after they are released from their parent tree, while the white mangrove, Laguncularia racemosa, floats for up to 24 days, though it starts losing its ability to take root after eight. The flotation time allows for the propagules to vacate the area where their parent grows and avoid competition with an already established mangrove.

Mangroves as Ecosystems

Mangroves are among the most productive and biologically complex ecosystems on Earth. They cover between roughly 53,000 and 77,000 square miles (138,000 and 200,000 square km) globally, acting as a bridge connecting the land and sea. Though most will be less than a couple miles thick along the coastline, in some areas of the world they are massive aquatic forests. The Sundarbans Forest, a UNESCO World Heritage site at the mouth of the Ganges, Brahmaputra, and Megha Rivers in the Bay of Bengal fronting India and Bangladesh, is a network of muddy islands and waterways that extends roughly 3,860 square miles (10,000 square km), two times the size of the state of Delaware. 

Credit : Ocean find your blues

Picture Credit : Google

WHAT ARE KEYSTONE SPECIES?

Keystone species play a unique and crucial role in the functioning of an ecosystem. The animals and organisms that come under this category help to maintain biodiversity within their community either by controlling populations of other species that would otherwise dominate the community or by providing critical resources for the survival of a wide range of organisms.

These species act as the glue that holds the system together. The term was coined by Dr Robert Paine in 1969, to describe the power a single species exerts on an ecosystem. Examples of keystone species include starfish, sea otters, beavers, wolves, elephants, prairiedogs and bees.

Keystone Species Examples

Sea Otter

The sea otter (shown below) is considered a keystone species as their consumption of sea urchins, preventing the destruction of kelp forests caused by the sea urchin population. Kelp forests are a critical habitat for many species in nearshore ecosystems. In the absence of sea otters, sea urchins feed on the nearshore kelp forests, thereby disrupting these nearshore ecosystems. However, when sea otters are present, their consumption of sea urchins restricts the sea urchin population to smaller organisms confined to protective crevices. Thus, the sea otter protects the kelp forests by reducing the local sea urchin population.

Large Mammalian Predators

While small predators are important keystone species in many ecosystems, as mentioned above, large mammalian predators are also considered keystone species in larger ecosystems. For example, the lion, jaguar (shown below), and gray wolf are considered keystone species as they help balance large ecosystems (e.g., Central and South American rainforests) by consuming a wide variety of prey species.

Sea Star

Sea stars (shown below) are another commonly recognized keystone species as they consume mussels in areas without natural predators. In many cases, when the sea star is removed from an ecosystem, the population of mussels proliferates uncontrollably, and negatively effects the resources available to other species within the ecosystem.

Credit :  Biology dictionary  

Picture Credit : Google 

WHAT IS THE JET STREAM?

Jet streams are bands of strong wind that generally blow from the west to the east across the world. They impact weather, air travel and many other things that take place in our atmosphere. They form when warm air masses meet cold air masses in the atmosphere. The fast-moving air currents in a jet stream can impact the weather system in a region affecting temperature and precipitation. But if a weather system is far away from a jet stream, it might hover over one place, causing heat waves or floods.

What Causes Jet Streams?

Jet streams form when warm air masses meet cold air masses in the atmosphere.

The Sun doesn’t heat the whole Earth evenly. That’s why areas near the equator are hot and areas near the poles are cold.

So when Earth’s warmer air masses meet cooler air masses, the warmer air rises up higher in the atmosphere while cooler air sinks down to replace the warm air. This movement creates an air current, or wind. A jet stream is a type of air current that forms high in the atmosphere.

On average, jet streams move at about 110 miles per hour. But dramatic temperature differences between the warm and cool air masses can cause jet streams to move at much higher speeds — 250 miles per hour or faster. Speeds this high usually happen in polar jet streams in the winter time.

How Do Jet Streams Affect Air Travel?

Jet streams are located about five to nine miles above Earth’s surface in the mid to upper troposphere — the layer of Earth’s atmosphere where we live and breathe.

Airplanes also fly in the mid to upper troposphere. So, if an airplane flies in a powerful jet stream and they are traveling in the same direction, the airplane can get a boost. That’s why an airplane flying a route from west to east can generally make the trip faster than an airplane traveling the same route east to west.

How Do Jet Streams Affect Weather?

The fast-moving air currents in a jet stream can transport weather systems across the United States, affecting temperature and precipitation. However, if a weather system is far away from a jet stream, it might stay in one place, causing heat waves or floods.

Earth’s four primary jet streams only travel from west to east. Jet streams typically move storms and other weather systems from west to east. However, jet streams can move in different ways, creating bulges of winds to the north and south.

How Does the Jet Stream Help Us Predict the Weather?

Weather satellites, such as the Geostationary Operational Environmental Satellites-R Series (GOES-R), use infrared radiation to detect water vapor in the atmosphere. With this technology, meteorologists can detect the location of the jet streams.

Monitoring jet streams can help meteorologists determine where weather systems will move next. But jet streams are also a bit unpredictable. Their paths can change, taking storms in unexpected directions. So satellites like GOES-16 can give up-to-the-minute reports on where those jet streams are in the atmosphere — and where weather systems might be moving next.

Credit : Science jinks 

Picture Credit : Google 

WHAT IS INFRARED RADIATION?

Infrared radiation or infrared light is a radiant energy that is invisible to the human eyes, but can be felt as heat. It is a type of electromagnetic radiation spectrum with frequencies being produced when atoms absorb and release energy. The two most obvious sources of infrared light are the sun and fire.

Every object in the universe can emit IR radiation at some level and the most well-known sources are fire and the sun.

IR is a kind of electromagnetic radiation wherein frequencies in a continuum get produced as atoms that release and absorb energy.

It can go from the lowest to the highest frequency.

Included in electromagnetic radiation are radio waves, microwaves, infrared radiation, gamma rays, X-rays, visible light, and ultraviolet radiation.

When these kinds of radiation go together, they create the electromagnetic spectrum.

According to NASA, William Herschel, a well-known British astronomer, discovered infrared light in the year 1800.

He had an experiment that could measure how the colors in the visible spectrum have different temperatures.

He had thermometers placed in the light path of every color in the visible spectrum and was able to observe the temperature increase when it went from blue to red.

William also discovered that the measurement of warmer temperature was beyond the visible spectrum’s red end.

Infrared waves happen at frequencies above the microwaves in the electromagnetic spectrum.

They are just below the visible red light, which is why they are called “infrared.”

As per Caltech or the California Institute of Technology, compared to visible light, infrared radiation has longer waves.

The IR frequencies can range from around 300 GHz to approximately 400 THz, with wavelengths estimated to have a range from 1,000 micrometers to 760 nanometers.

However, according to NASA, these values may not be definitive.

Just like the visible spectrum of light that ranges from the longest wavelength of red to the shortest visible light wavelength of violet, infrared radiation comes with a range of wavelengths of its own.

According to NASA, the “far-infrared” waves are longer and closer to the electromagnetic spectrum’s microwave section.

You can feel this as intense heat that is the same as the heat from fire or sunlight.

“Near-infrared” waves that are shorter can be closer to the electromagnetic spectrum’s visible light.

Aside from that, it does not emit detectable heat like what the television’s remote control discharges whenever it changes the channels.

One of the ways you can have heat transferred between two places is IR radiation.

Conduction and convection are the other two.

Everything that has a temperature of more than -268°C or -450°F can emit IR radiation.

As per the University of Tennessee, half of the sun’s total energy is emitted as IR and most of the visible light of a star can get re-emitted and absorbed as IR.

Credit : IRDA

Picture Credit : Google