On May 15, 1963, the last mission of Project Mercury got under way. Astronaut Gordon Cooper closed out things in style as his flight stretched the capabilities of the Mercury spacecraft to its limits.

The Mercury Seven, also referred to as the Original Seven, were a group of seven astronauts selected to fly spacecraft for Project Mercury - the first human space flight program by the U.S. Even though there were some hiccups, the project, initiated in 1958, was largely successful in its three goals of operating a human spacecraft. investigating an astronaut's ability to work in space, and recovering spacecraft and crew safely.

Youngest of the Mercury Seven

The final flight of Project Mercury took place in May 1963. The youngest of the Original Seven, astronaut Gordon Cooper, went on to become the first American to fly in space for more than a day during this mission.

Leroy Gordon Cooper Jr. was born in 1927 and served in the Marine Corps in 1945 and 1946. He was commissioned in the U.S. Army after attending the University of Hawaii.

He was called to active duty in 1949 and completed pilot training in the U.S. Air Force. He was a fighter pilot in Germany from 1950 to 1954 and earned a bachelor's degree at the Air Force Institute of Technology in 1956. He served as a test pilot at Edwards Air Force Base in California until he was selected as an astronaut for Project Mercury. Cooper flew Mercury-Atlas 9, the last Mercury mission, which was launched on May 15, 1963. He called his capsule Faith 7, the number indicating his status as one of the Original Seven astronauts.

Conducts 11 experiments

 Longer than all of the previous Mercury missions combined. Cooper had enough time in his hands to conduct 11 experiments. These included monitoring radiation levels, tracking a strobe beacon that flashed intermittently, and taking photographs of the Earth.

When Cooper sent back black-and-white television images back to the control centre during his 17th orbit, it was the first TV transmission from an American crewed spacecraft. And even though there were plans for Cooper to sleep as much as eight hours, he only managed to sleep sporadically during portions of the flight. After 19 orbits without a hitch, a faulty sensor wrongly indicated that the spacecraft was beginning re-entry. A short circuit then damaged the automatic stabilisation and control system two orbits later. Despite these malfunctions and the rising carbon dioxide levels in his cabin and spacesuit. Cooper executed a perfect manual re-entry.

Lands without incident Cooper had clocked 34 hours and 20 minutes in space, orbiting the Earth 22 times and covering most of the globe in the process. This meant that he could practically land anywhere in the globe, a potential pain point that the U.S. State

Department was nervous about. In fact, on May 1, 1963, the country's Deputy Under Secretary fuel, venting gas that made the spacecraft roll, and more in what felt like a never-ending series during their eight-day mission. They, however, completed 122 orbits, travelling over 5.3 million km in 190 hours and 56 minutes, before safely making their way back to Earth.

After accumulating more than 225 hours in space, Cooper served as the backup command pilot of Gemini 12, which was launched in November 1966, and the backup command pilot for Apollo 10 in May 1969. By the time Cooper left NASA and retired from the Air Force in July 1970, human beings had set foot on the moon, further vindicating the Mercury and Gemini projects that Cooper had been involved with.

Picture Credit : Google 


The first woman to travel in space was Soviet cosmonaut, Valentina Tereshkova. On 16 June 1963, Tereshkova was launched on a solo mission aboard the spacecraft Vostok 6. She spent more than 70 hours orbiting the Earth, two years after Yuri Gagarin’s first human-crewed flight in space.

Tereshkova was born on 6 March 1937 in the village of Bolshoye Maslennikovo in central Russia. Her mother was a textile worker, and her father was a tractor driver who was later recognised as a war hero during World War Two. At the time of his death on the Finnish front, Tereshkova was only two years old. 

After leaving school, Tereshkova followed her mother into work at a textile factory. Her first appreciation of flying was going down rather than up when she joined a local skydiving and parachutist club. It was her hobby of jumping out of planes that appealed to the Soviets' space programme committee. On applying to the cosmonaut corps, Tereshkova was eventually chosen from more than 400 other candidates. 

Tereshkova received 18 months of severe training with the Soviet Air Force after her selection. These tests studied her abilities to cope physically under the extremes of gravity, as well as handle challenges such as emergency management and the isolation of being in space alone. At 24 years old, she was honourably inducted into the Soviet Air Force. Tereshkova still holds the title as the youngest woman, and the first civilian to fly in space. 

While Tereshkova remains the only woman to have flown solo in space, her mission was a dual flight. Fellow cosmonaut Valeriy Bykovsky launched on Vostok 5 on 14 June 1963. Two days later, Tereshkova launched. The two spacecraft took different flight paths and came within three miles of each other. The cosmonauts exchanged communications while making 48 orbits of Earth, with Tereshkova responding to Bykovsky via her callsign ‘Seagull’. During the flight, the Soviet state television network broadcast a video of Tereshkova inside the capsule, and she spoke with the Russian Premier Nikita Khrushchev over the radio. 

In her later life, Tereshkova was decorated with prestigious medals and has held several prominent political positions both for the Russian and global councils. Before the collapse of the Soviet Union, she was an official head of State and was elected a member of the World Peace Council in 1966. 

Today, she holds the position of Deputy Chair for the Committee for International Affairs in Russia. She also remains active within the space community and is quoted as suggesting that she would like to fly to Mars - even if it were a one-way trip. 

Credit : Royal  museums greenwich

Picture Credit : Google


Yes, that credit goes to American astronaut Alan Shepard. He was the first to play golf on the lunar surface. He achieved the feat when he was part of the Apollo 14 mission in 1971. He is said to have hit two golf balls across the surface of the moon with a makeshift club.

Shepard took a few moments during the Apollo 14 landing to show off his hobby during a live broadcast from the lunar surface on Feb. 6, 1971. He took two shots, with the second ball going "miles and mile," he said on-camera. He was exaggerating, according to new analysis from the United States Golf Association (USGA). Based on data from the crew and a modern-day moon mission, the group found that the first ball traveled 24 yards (22 meters) and the second about 40 yards (37 m). By comparison, a 2019 report using golf tournaments' gender categories shows that an average amateur male golfer on Earth can drive the ball 216 yards (198 m), and an average female golfer 148 yards (135 m), although those distances have increased significantly since Shepard's flight. To be fair to Shepard, however, he had more obstacles to contend with than your typical Sunday hobbyist. His golf "club" was actually a modified sample collection device with the head attached to the end. He was also wearing a notoriously stiff spacesuit that forced him to swing with a single arm. 

USGA found the lunar golf balls in high-resolution, enhanced scans of the original flight footage of the Apollo 14 mission. The association measured the point between divot and locations where the balls ended up using high-resolution images from orbit taken by NASA's Lunar Reconnaissance Orbiter, which launched in 2009.

The association used a second technique to confirm the measurements. Some of the images used were photo sequences taken from the lunar module, the astronauts' landing craft, taken to show the entire landing site to geologists on Earth. USGA stitched the photographs into a panorama to demonstrate the location of the divot and the two balls, which (after taking the new photo enhancements into account) were well within view of the landed spacecraft. 

The two balls are also visible in Apollo 14 takeoff footage, but only after applying "a complex stacking technique on multiple separate frames," according to a USGA Golf Journal story. This means NASA astronauts Shepard and Ed Mitchell likely couldn't have seen the balls themselves from the spacecraft, either during their time on the ground or when flying away from the moon.

Credit : Space.com

Picture Credit : Google 

Why do the footprints of astronauts remain unchanged on the surface of the moon?

We are pretty proud of the human flight to the Moon and our footprints on the lunar surface. But did you know these footprints can last a million years on the surface of the Moon? It has been decades since humans last set foot on the Moon, but its surface is still marked with the historic footprints of the 12 astronauts who walked across it Unlike on Earth, there is no erosion by wind or water on the Moon because it has no atmosphere. The Moon is geologically inactive there are no earthquakes or volcanoes. So, nothing gets washed away and nothing gets eroded.

However, the Moon is exposed to bombardment by meteorites, which change the surface. One little spacerock could easily wipe out a footprint on the moon. And since the Moon has no atmosphere, it is exposed to the solar wind, a stream of charged particles coming from the sun, and over time this acts almost like weather on Earth to scour surfaces on the moon, but the process is very, very slow.

On July 20, 1969, Neil Armstrong put his left foot on the rocky Moon. It was the first human footprint on the Moon. They had taken TV cameras with them. The two astronauts walked on the Moon. They picked up rocks and dirt to bring back to Earth. The astronauts had much work to do. Then, the Eagle went back to meet astronaut Collins. He was in the Command Module working.

When Neil Armstrong and Buzz Aldrin visited the moon 50 years ago, they left roughly 100 objects behind, including a portion of their lunar lander, the American flag and, yes, various kinds of trash. Those objects are still there, surrounded by rugged bootprints marking humanity’s first steps on another world. But that site, called Tranquillity Base, may not be as enduring as the legacy those prints represent.

Picture Credit : Google 

Did the fruit flies survive in space?

Fruit flies were the first organisms sent to space. For many years before sending mammals into space, such as dogs or humans, scientists studied Drosophila melanogaster (the common fruit fly) and its reactions to both radiation and space flight to understand the possible effects of space and a zero-gravity environment on humans. Starting in the 1910s, researchers conducted experiments on fruit flies because humans and fruit flies share many genes. On February 20, 1947, fruit flies became the first living and sentient organisms to go to space and return, which paved the way for human exploration. At the height of the Cold War and the Space Race, flies were sent on missions to space with great frequency, allowing scientists to study the nature of living and breeding in space. Scientists and researchers from the Soviet Union and the United States both used fruit flies for their research and missions.

Fruit flies have been used in recent years as the reality of Mars and Moon colonization becomes clearer. These flies further the understanding of the effects of weightlessness on the cardiovascular system, the immune system, and the genes of astronauts. Fruit flies have been invaluable assets to scientific discoveries that humankind have made, especially discoveries about space travel.

Mankind has long admired the heavens and wondered about space. Even after the Space Race was completed, advancements in space travel continued. Researchers continue to study the ability of life to survive in the harsh atmosphere of space, promote commercial development, expand and advance knowledge, and prepare future generations for exploration. Throughout time, Animals in space have ensured suitable conditions for human exploration. Larger animals including dogs, monkeys, cats, mice, and others, have been vital to many excursions, as have insects.

The fruit fly has frequently been utilized for space travel, due to its comparable genetics to that of humans. The short gestation period and quick maturing process allows their continued use. Additionally, a female fruit fly can lay one hundred eggs daily, and each egg requires less than ten days to fully mature. Since three-quarters of its genome compares to other organisms, fruit flies frequently proceed humans in space travel because their entire genetic makeup, including the sex chromosomes, have been sequenced by scientists.

Credit : Wikipedia 

Picture Credit : Google