WHAT IS ICEBERG CALVING

Iceberg calving, also called glacier calving, is the breaking away or release of huge ice chunks from the termini of glaciers or the margins of ice shelves. Ice shelves can calve huge tabular icebergs over decades or longer like the Antarctic’s Larsen C Sometimes, small fast flowing glaciers continuously calve small chunks of ice into their fjords like the San Rafael glacier in Chile.

Causes of iceberg calving

It is useful to classify causes of calving into first, second, and third order processes. First order processes are responsible for the overall rate of calving at the glacier scale. The first order cause of calving is longitudinal stretching, which controls the formation of crevasses. When crevasses penetrate the full thickness of the ice, calving will occur. Longitudinal stretching is controlled by friction at the base and edges of the glacier, glacier geometry and water pressure at the bed. These factors, therefore, exert the primary control on calving rate.

Second and third order calving processes can be considered to be superimposed on the first order process above, and control the occurrence of individual calving events, rather than the overall rate. Melting at the waterline is an important second order calving process as it undercuts the subaerial ice, leading to collapse. Other second order processes include tidal and seismic events, buoyant forces and melt water wedging.

When calving occurs due to waterline melting, only the subaerial part of the glacier will calve, leaving a submerged 'foot'. Thus, a third order process is defined, whereby upward buoyant forces cause this ice foot to break off and emerge at the surface. This process is extremely dangerous, as it has been known to occur, without warning, up to 300m from the glacier terminus.

Credit : Wikipedia 

Picture Credit : Google 

WHAT IS HEAT WAVE?

Heatwave is a period of abnormally high surface temperatures relative to what's actually expected over a region at a particular time of the year. Countries have adopted their own standards to declare a heatwave. Heatwaves occur in summer when the high pressure across an area moves slowly, thereby persisting over it for a few days or even weeks. Heatwaves have been observed globally since the 1950s, and have been associated with climate change. It can lead to heat-related stress such as dehydration, exhaustion and heatstroke.

Dangerous Heat

For some, a heat wave might sound like an excuse to run around with a hose or into some sprinklers. In reality, though, heat waves are no laughing matter. They are serious weather phenomena that can be quite dangerous.

How Do Heat Waves Form?

Heat waves are generally the result of trapped air. During the 2012 heat wave, air was trapped above much of North America for a long period of time. As opposed to cycling around the globe, it simply stayed put and warmed like the air inside an oven.

The culprit? A high-pressure system from Mexico. Between June 20th and June 23rd, this system migrated north. It grew in size, and it parked itself over the Great Plains of the United States.

High-pressure systems force air downward. This force prevents air near the ground from rising. The sinking air acts like a cap. It traps warm ground air in place. Without rising air, there was no rain, and nothing to prevent the hot air from getting hotter.

But that wasn’t all. A weather pattern that normally pulls air toward the east was also weaker at the time. That meant that there was little that could be done to push this high-pressure cap out of the way.

Credit : Sci jinks

Picture Credit : Google 

WHAT IS EL NINO WEATHER?

A climate pattern describing the unusual warming of surface waters in the easter tropical Pacific Ocean, El Nino corresponds to the warm phase of the larger phenomenon known as the El Nino-Southern Oscillation (ENSO). The pattern that describes the unusual cooling of the region's surface waters, or the cool phase of ENSO, is referred to as La Nina. Ocean temperatures, the speed and strength of ocean currents, health of local fisheries, and the local weather of regions from Australia to South America and beyond are affected by the El Nino, which is not a regular cycle.

The El Nino phenomenon caused muddy rivers to overflow along the entire Peruvian coast in 2017.

El Nino can be understood as a natural phenomenon wherein the ocean temperatures rise especially in parts of the Pacific ocean. It is the nomenclature which is referred to for a periodic development along the coast of Peru. This development is a temporary replacement of the cold current along the coast of Peru.   El Nino is a Spanish word. The term El Nino basically means ‘the child’. This is due to the fact that this current starts to flow around Christmas and hence the name referring to baby Christ.

Another natural phenomenon, similar to El Nino is La Nina, which is also in news these days. The term La Nina literally means ‘ little girl’. It is termed as opposite to the phenomenon of El Nino as it results in the ‘cooling’ of the ocean water in parts of the Pacific ocean.   Both of them also result in changes in atmospheric conditions along with oceanic changes.

El Nino Effects

El Nino results in the rise of sea surface temperatures
It also weakens the trade winds of the affected region
In India, Australia, it can bring about drought conditions. This affects the crop productivity largely. It has been also observed certain times, that EL Nino may not bring drought but cause heavy rainfall. In both the cases, it causes heavy damage.
However, in some other countries it may result in a complete reversal, i.e., excessive rainfall.

 Mitigation Of  Effects:

Keeping a check on the sea surface temperatures.
Maintaining sufficient buffer stocks of food grains and ensuring their smooth supply.
Ensuring relevant support to the farmer community including economic help.
Alternative ways to be promoted such as the practice of sustainable agriculture.

Credit : BYJUS.com

Picture Credit : Google